Overview

Packages

  • JAMA
  • None
  • PHP
  • PHPExcel
    • CachedObjectStorage
    • Calculation
    • Cell
    • Chart
      • Renderer
    • Reader
      • Excel2007
      • Excel5
    • RichText
    • Settings
    • Shared
      • Escher
      • OLE
      • Trend
      • ZipArchive
    • Style
    • Worksheet
      • Drawing
    • Writer
      • 2007
      • CSV
      • Excel2007
      • Excel5
      • HTML
      • PDF

Classes

  • PHPExcel_Best_Fit
  • PHPExcel_Exponential_Best_Fit
  • PHPExcel_Linear_Best_Fit
  • PHPExcel_Logarithmic_Best_Fit
  • PHPExcel_Polynomial_Best_Fit
  • PHPExcel_Power_Best_Fit
  • trendClass
  • Overview
  • Package
  • Class
  • Tree
  • Deprecated
  • Todo
  • Download

Class PHPExcel_Best_Fit

PHPExcel_Best_Fit

Direct known subclasses

PHPExcel_Exponential_Best_Fit, PHPExcel_Linear_Best_Fit, PHPExcel_Logarithmic_Best_Fit, PHPExcel_Polynomial_Best_Fit, PHPExcel_Power_Best_Fit
Package: PHPExcel\Shared\Trend
Category: PHPExcel
Copyright: Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
License: LGPL
Located at controlador/include/phpexcel/PHPExcel/Shared/trend/bestFitClass.php
Methods summary
public
# getError( )
public
# getBestFitType( )
public float
# getValueOfYForX( float $xValue )

Return the Y-Value for a specified value of X

Return the Y-Value for a specified value of X

Parameters

$xValue
X-Value

Returns

float
Y-Value
public float
# getValueOfXForY( float $yValue )

Return the X-Value for a specified value of Y

Return the X-Value for a specified value of Y

Parameters

$yValue
Y-Value

Returns

float
X-Value
public float[]
# getXValues( )

Return the original set of X-Values

Return the original set of X-Values

Returns

float[]
X-Values
public string
# getEquation( integer $dp = 0 )

Return the Equation of the best-fit line

Return the Equation of the best-fit line

Parameters

$dp
Number of places of decimal precision to display

Returns

string
public string
# getSlope( integer $dp = 0 )

Return the Slope of the line

Return the Slope of the line

Parameters

$dp
Number of places of decimal precision to display

Returns

string
public string
# getSlopeSE( integer $dp = 0 )

Return the standard error of the Slope

Return the standard error of the Slope

Parameters

$dp
Number of places of decimal precision to display

Returns

string
public string
# getIntersect( integer $dp = 0 )

Return the Value of X where it intersects Y = 0

Return the Value of X where it intersects Y = 0

Parameters

$dp
Number of places of decimal precision to display

Returns

string
public string
# getIntersectSE( integer $dp = 0 )

Return the standard error of the Intersect

Return the standard error of the Intersect

Parameters

$dp
Number of places of decimal precision to display

Returns

string
public float
# getGoodnessOfFit( integer $dp = 0 )

Return the goodness of fit for this regression

Return the goodness of fit for this regression

Parameters

$dp
Number of places of decimal precision to return

Returns

float
public
# getGoodnessOfFitPercent( $dp = 0 )
public float
# getStdevOfResiduals( integer $dp = 0 )

Return the standard deviation of the residuals for this regression

Return the standard deviation of the residuals for this regression

Parameters

$dp
Number of places of decimal precision to return

Returns

float
public
# getSSRegression( $dp = 0 )
public
# getSSResiduals( $dp = 0 )
public
# getDFResiduals( $dp = 0 )
public
# getF( $dp = 0 )
public
# getCovariance( $dp = 0 )
public
# getCorrelation( $dp = 0 )
public
# getYBestFitValues( )
protected
# _calculateGoodnessOfFit( $sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const )
protected
# _leastSquareFit( $yValues, $xValues, $const )
public
# __construct( float[] $yValues, float[] $xValues = array(), boolean $const = True )

Define the regression

Define the regression

Parameters

$yValues
The set of Y-values for this regression
$xValues
The set of X-values for this regression
$const
Properties summary
protected boolean $_error

Indicator flag for a calculation error

Indicator flag for a calculation error

# False
protected string $_bestFitType

Algorithm type to use for best-fit

Algorithm type to use for best-fit

# 'undetermined'
protected integer $_valueCount

Number of entries in the sets of x- and y-value arrays

Number of entries in the sets of x- and y-value arrays

# 0
protected float[] $_xValues

X-value dataseries of values

X-value dataseries of values

# array()
protected float[] $_yValues

Y-value dataseries of values

Y-value dataseries of values

# array()
protected boolean $_adjustToZero

Flag indicating whether values should be adjusted to Y=0

Flag indicating whether values should be adjusted to Y=0

# False
protected float[] $_yBestFitValues

Y-value series of best-fit values

Y-value series of best-fit values

# array()
protected integer $_goodnessOfFit
# 1
protected integer $_stdevOfResiduals
# 0
protected integer $_covariance
# 0
protected integer $_correlation
# 0
protected integer $_SSRegression
# 0
protected integer $_SSResiduals
# 0
protected integer $_DFResiduals
# 0
protected integer $_F
# 0
protected integer $_slope
# 0
protected integer $_slopeSE
# 0
protected integer $_intersect
# 0
protected integer $_intersectSE
# 0
protected integer $_Xoffset
# 0
protected integer $_Yoffset
# 0
Autene API documentation generated by ApiGen